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Abstract— This paper presents a method for measuring the
in-bucket payload volume on a dragline excavator for the
purpose of estimating the material’s bulk density in real-
time. Knowledge of the payload’s bulk density can provide
feedback to mine planning and scheduling to improve blasting
and therefore provide a more uniform bulk density across
the excavation site. This allows a single optimal bucket size
to be used for maximum overburden removal per dig and
in turn reduce costs and emissions in dragline operation and
maintenance.

The proposed solution uses a range bearing laser to locate
and scan full buckets between the lift and dump stages of the
dragline cycle. The bucket is segmented from the scene using
cluster analysis, and the pose of the bucket is calculated using
the Iterative Closest Point (ICP) algorithm. Payload points are
identified using a known model and subsequently converted
into a height grid for volume estimation. Results from both
scaled and full scale implementations show that this method
can achieve an accuracy of above 95%.

I. INTRODUCTION

This paper demonstrates the automatic measurement of
the bulk density within a dragline bucket on a production
dragline. Through the use of a range bearing sensor, a three
dimensional model of the bucket and payload is constructed
while in motion. The payload is segmented from the bucket
to estimate the volume of the material. The density of the
payload is then calculated using the weight measured from
a third party dragline monitoring package.

Accurate estimates of the bulk density are beneficial to the
open cut coal industry as they can provide:

1) a reliable assessment of dig and blast performance,

2) an improved bucket size selection to achieve consistent
suspended load targets, and

3) decreased production downtime by reducing probabil-
ity of bucket overloads and subsequent damage to the
dragline.

This paper is primarily concerned with the volume com-
ponent of the material bulk density as the bucket payload
weight is readily available through commercial dragline
monitors. Volume estimation of the material in a dragline
bucket is difficult as the bucket is not rigidly coupled to the
machine as with other excavators. The bucket is attached to
free moving ropes and thus the dynamics of the bucket are
unknown. Here we use Iterative Closest Point (ICP) [1] to
match observed data points on the bucket to a known model
and subsequently determine the pose. This pose information,
in conjunction with point clustering techniques [2], [3], is
used to extract a point cloud representation of the payload.
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Fig. 1: Processed scaled payload data with superimposed
bucket model.

Finally, a height grid is created from the point cloud and used
to measure the volume of the payload, which is combined
with the weight to provide a density estimate.

A. Literature Review

Volume estimation of a 3D surface can be efficiently
computed using representations such as height grids, voxels,
or polygons. In our work, the 3D surface is constructed from
a point cloud generated from a laser range finder. Generating
an accurate 3D surface from point clouds has been investi-
gated extensively in the computer vision community [4], [5],
[6].

Zhang et al. generate point clouds from laser measure-
ments and compared two methods to construct the 3D
surfaces and subsequently estimate volume [7]. The first
method is a Meshed Surface technique that bins collected
points into uniformly spaced cells to form a height grid
but requires interpolation for sparse data sets. The second
method, named Isolated Points, measures volume by setting
the area covered by each point to equal the total area scanned
divided by the number of points collected. This method
suffers from inaccurate estimates due to under-sampling in
occluded regions or where reflectivity is low.

In the context of mining, Duff used laser scanners to
estimate the volume of the load in a haul truck tray as it
passed through a weigh station [8]. In contrast to the ever-
changing terrain experienced by a dragline, the environment
surrounding the weigh station remains static. In more closely
related work, Rowlands er al. used a stereo camera to
quantify dragline bucket fill volume during the dig phase of
a typical dragline cycle [9]. Payload volumes were processed
offline as computational resources for stereo vision were not



adequate in the late ’90s. Unfortunately, the accuracy of
Rowland’s results are unknown as no ground truth data was
collected. Although real-time stereo processing is feasible at
present, problems with lighting conditions (especially night
operation) still require further study.

1) Identifying Points of Interest: The intial step in gener-
ating a 3D surface and subsequent volume estimation is to
identify the points of interest in the data and extract them
from the surrounding noise. In our case, we want to identify
the payload and segment it from the bucket and other external
objects such as terrain. We focus on cluster analysis of points
and learn a model to classify the clusters.

The large range of existing point cluster techniques can
be classified as either partitioning or hierarchical [10]. Par-
titioning techniques such as the classical k-means [11], [12]
typically do not perform well on data containing noise
or non-convex cluster shapes as experienced in our work.
More recent hierarchical methods such as DBSCAN [2],
OPTICS [13], CURE [10] or SNN [3] overcome these draw-
backs by simultaneously detecting clusters based on density
connectivity and identifying low density points as noise.
DBSCAN?’s ability to distinguish between points of varying
density is limited while SNN can identify uniformly low
density clusters by analysing the shared nearest neighbours
between points. We make use of both the DBSCAN and SNN
algorithms.

We use supervised classification of the resultant clusters
to identify the bucket data points. Supervised classifiers
are numerous and varied [14]. For simplicity we train a
Bayes classifier offline from manually labelled clusters and
use the learnt model to identify bucket and payload points.
Other automatic methods, such as unsupervised Bayesian
classification [15] with class mixing could also be used, but
are more complicated.

2) Pose Estimation: Once the payload and bucket data
points are isolated, a 3D surface can be constructed. How-
ever, to compute the volume, the internal surfaces of the
bucket which define the lower surfaces of the payload must
be determined. Here we match the observed points to a
predetermined model of the bucket using pose estimation. As
the bucket is dynamic in nature, the problem is exacerbated
when compared to [8].

Pose estimation in a dragline context has been investigated
by Mclnnes who devised formulae for measuring the out-of-
plane motion of a dragline bucket by sensing the strain at two
points on the boom [16]. This coupled with hoist and drag
rope length information enabled determination of the four
degrees of freedom of the bucket [17]. Ridley and Corke
dynamically estimated the pose of a dragline bucket through
the use of a kinematic model of the boom and bucket rigging
[18].

We take a different approach of matching a model to the
observed points, commonly used in the robotics community.
This type of approach includes techniques such as least
squares fitting [19] and Iterative Closest Point (ICP) [1]
allowing the determination of the six degree of freedom
transformation between the observed points and the model.

The least squares fitting solution proposed by Arun solves
the regression problem of finding the rotation and translation
through the use of singular value decomposition (SVD) [19].

ICP iteratively matches a set of data points to a set of
model points and estimates the transformation between these
sets. Only the closest model point to each data point is
considered per iteration. The transformation between the
data points and the closest model point subset is calculated
through a least squares minimisation process [19]. This paper
makes use of the ICP algorithm as it does not depend
on the number of data or model points, feature matching
is not required, and with a good initialisation an accurate
pose estimate can be computed within a small number of
iterations, enabling real-time performance.

3) Paper Outline: Section II provides a system overview,
while section III explains the classification of laser data for
bucket identification. Bucket dynamics and shape reconstruc-
tion is approximated in Section IV by measuring the horizon-
tal sway and rope lengths as the bucket passes through the
scan plane. Methods for evaluating the reconstructed bucket
pose are discussed in Section V. Section VI details how the
payload is filtered and the volume calculated. Section VII
demonstrates the accuracy of the system implemented on
both a scaled test bed and a full scale production machine.
The findings and future applications are outlined in Section
VIII with acknowledgements given in Section IX.

II. SYSTEM SETUP

A typical dragline cycle consists of digging, swinging,
dumping and returning. During the dig, the bucket is dragged
through the ground filling as it nears the machine. After
lifting a full bucket with hoist ropes the machine swings
through an arc of generally 120 degrees to dump the load.
While doing so it releases the drag rope moving the bucket
out under the boom tip where the bucket rigging allows the
material to be dumped. Finally the machine swings back for
the next dig. The bucket motion is controlled by the operator
adjusting hoist and drag rope velocities to move the bucket
to the dump zone. Additionally swing accelerations cause
the bucket to move in a normal direction to the boom plane.

A Sick LD-MRS laser mounted to a pan tilt unit (PTU)
was chosen for imaging the bucket from an access platform
located on the boom (Fig. 2). The LD-MRS is an all weather
laser which operates in rain and dusty conditions. The laser
is set to focused mode where central angles have a finer
resolution. This is beneficial in this application as this is
typically where the bucket is located. During the swing, the
payload surface of the loaded bucket is sampled by the laser
with the resulting point cloud used to compute the payload
volume. The laser is orientated to scan across the width of the
bucket allowing the magnitude of the sway to be observed.

III. BUCKET IDENTIFICATION

The laser constantly samples the environment with or
without the bucket present. Identifying the bucket in the
scan data is not a trivial task as the terrain is constantly
changing and the bucket position differs each cycle. Bucket
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Fig. 2: System Overview. Left: Photo of BE1370 returning from dump position. Right: Illustration of dragline detailing
major components of the system. The laser samples the bucket as the drag rope is released during the swing phase.

identification is critical in isolating the relevant data from
background noise such as points from the terrain. To identify
points associated with the bucket, we firstly group points
from a single scanline into clusters and then assign labels to

each cluster.

A. Clustering

In our work clustering is performed on each individual 2D
scanline and to filter bucket points from payload points. We
use SNN [3] for the former and DBSCAN [2] for the latter.
Advantages of these schemes include the ability to segment
non convex shapes, identify noise, and automatically estimate
the number of partitions in a data set. We describe these two
algorithms in more detail in the following paragraphs.

Both algorithms recursively group points into clusters
dependent on neighbourhood density. In DBSCAN the neigh-
bourhood is defined as the set of points within a Euclidean
volume with radius ¢, while density is the number of points
within this fixed volume. SNN defines a neighbourhood as
a set of k nearest neighbours (kNN) to a given point, while
SNN density is the number of links in this neighbourhood.
SNN links are made from a point p to any point ¢ in its KNN
such that p is a member of ¢ kNN [3].

SNN and DBSCAN clusters are constructed based on
density reachability and density connectivity, where density
is defined by two parameters: the radius of a point’s neigh-
bourhood ¢ (or k for SNN), and the minimum threshold of
the number of points in the € neighbourhood minPts [2].

Points p and g are density connected if there is a point o,
such that p and g are both density reachable from o. Points
with at least minPts in their € neighbourhood are considered
to be core-points while border-points are points neighbouring
core-points with less than minPts neighbours. Noise points
can be identified as points without any core points in their
€ neighbourhood [2].
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Fig. 3: Scanline points clustered using SNN. Yellow indicates
bucket points while blue and brown indicate terrain points.
Additionally this scan shows that simple thresholding meth-
ods cannot segment the bucket based on height alone.

SNN outperforms DBSCAN for clustering data with vary-
ing Euclidian density as experienced in the scanline shown
in Fig. 3. DBSCAN is later used to filter the payload by
removing outliers further than a fixed Euclidean distance
from the main payload cluster.

B. Bucket Classification

Once the scan data has been grouped into clusters, the
next step is to assign labels to these unclassified clusters.
Fig. 3 shows that the relative position of the terrain can
potentially be higher then the typical bucket position causing
thresholding methods to fail.

As such, classification of the clusters was performed
using a Bayes method. A training set of over 1000 clusters
was used to learn a multivariate Gaussian Mixture Model
(GMM). These clusters were manually labelled bucket, ter-
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Fig. 4: Top view of bucket point cloud before (left) and after
(right) sway correction is applied. A single scanline consists
of points along the x axis.

rain or noise. The multidimensional feature vector for each
cluster consisted of the three dimensions of each cluster’s
bounding box (height, width and depth), the cluster’s position
relative to the sensor, and the number of points in the
cluster. Once the model parameters were learnt, clusters were
automatically assigned a label using maximum likelihood.

IV. BUCKET RECONSTRUCTION

After identifying which clusters in each of the 2D scan-
lines corresponded to the bucket, these clusters needed to
be reconstructed to produce a 3D surface. This was not a
trivial task, as the dynamics of the bucket passing through the
laser scan plane were significant. The reconstruction process
needed to compensate for lateral movements (sway), as well
as changes in velocity (in the hoist and drag rope directions)
between scanlines. Bucket rotation (twist) was considered
negligible in typical dragline operation.

A. Sway Correction

Large angular accelerations during the swing phase cause
the bucket to act like a pendulum and sway out of the
boom plane. As the laser scan plane is orthogonal to the
boom plane, the bucket sway can be directly measured in the
scan (Fig. 4 left). This sway was measured using the mean
horizontal coordinate of each scanline. As outliers in these
coordinates can adversely affect the alignment, polynomial
regression was used for smoothing. The smoothed mean
coordinates were subsequently used to translate the scanlines,
thus correcting for sway (Fig. 4 right).

B. Velocity Correction

Changes in the velocities of the hoist and drag ropes
result in differences in spacing between each scanline. For
example, a slow velocity will result in concentrated scanlines
while faster velocities will result in well separated scanlines.
Thus, it is essential to estimate the magnitude of the inter-
scanline spacing to accurately reconstruct the bucket and
payload in 3D from the scanline data. The bucket position

Fig. 5: Bucket position estimated from rope lengths provided
by a third party dragline monitor.

was approximated using the hoist and drag rope lengths to
form a triangle with the boom (Fig. 5). For every scanline,
rope length data is collected from a third party dragline
monitor, and used to estimate the relative bucket position in
each scan. This calculated position yields the third dimension
of each scanline, completing the 3D reconstruction process.

V. BUCKET POSE ESTIMATION

Once the bucket has been segmented from the background
and the 3D surface has been recovered, the next step is
to evaluate the bucket pose relative to a reference model.
Knowledge of the bucket pose is vital as the reference model
aids in defining the inner surfaces of the bucket and therefore
the boundaries of the payload.

We used ICP to estimate the pose of the scanned bucket
relative to a known model (Fig. 6). Points potentially oc-
cluded by payload material are excluded from the model
point set. As with most iterative methods ICP required a good
initial transformation to ensure convergence to the global
minimum. A translation equal to the difference in means
between the model and data point sets was adequate for this
purpose.

VI. VOLUME ESTIMATION

Once the bucket is reconstructed and we know the pose,
we can compute the payload volume by removing the non-
payload bucket data points and differencing the known
reference bucket profile with the measured profile.

A. Payload Filtering

Knowledge of the bucket structure with pose information
allows for the direct removal of non-payload features such
as the arch, rim, and spreader bar. Once these features are
removed the remaining point cloud consists of a dense cluster
of payload points with a few outliers introduced from dust.
These outliers were removed using DBSCAN to identify low
density noise. DBSCAN parameters were set to match the
expected point density of the bucket surface. The resulting
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Fig. 6: Result of ICP model fitting to the scaled reconstructed
data points.

point cloud is a smooth continuous surface with all outliers
removed.

B. Volume Representation

Once the payload points are segmented, they need to be
represented in a form that readily allows volume computa-
tion. There are several representations capable of efficiently
measuring volume such as height grids, voxels, and polygons
formed from Delaunay triangulation. Due to simplicity, we
use height grids which are are constructed by binning points
into cells of fixed size based on their x, y values and assigning
the cell height to the average z value. The volume of each
cell is basically the cell height multiplied by the cell area.

VII. RESULTS

Due to the high cost of a dragline’s production time initial
trials were carried out using a 1:20 scaled dragline. After
viewing the results of the pilot study, Anglo Coal granted
90 minutes of production time (typical cost $300/minute)
for data acquisition on a BE1370 at Drayton Mine. This
allowed a ground truth dataset to be acquired by performing
high resolution sweep scans over static loaded buckets.

A. Pilot Study

The scale dragline test facility was used to conduct initial
algorithm testing. The scale facility allowed various initial
experiments to be performed without impacting production
on an actual dragline. Data was logged from a series of re-
alistic experiments with empty and loaded buckets imparted
with typical motion experienced in a mine setting.

A range bearing laser was setup on the scaled dragline
midway along the boom while the orientation of the sensor
was selected from analysing actual dragline data. The scan-
ning parameters of the laser were set to simulate the same
sampling resolution on the full scale system. The laser data
was post processed using the algorithms described in this
paper, implemented and visualised with Matlab. The results
of the scaled system trials are summarised in Table I and

Payload Yolume Errors

Yolume Error %

Bucket Number

Fig. 7: Volume errors for each production bucket payload
with 5% target as the red dashed line. Error is measured as
percentage difference from ground truth payload volume.

TABLE I: Results from both scaled and full scale trials

Scaled Trial | Full Scaled Trial
RMS Error 4.9% 3.7%
Mean Error 0.5% -1.8%
Standard Deviation 4.9% 3.3%
Sample Size 40 22

illustrate a volume estimate with an accuracy of greater than
95%.

B. Full Scale Trial

The algorithms used in the pilot study were re-
implemented in C++ to achieve real-time performance on
a full scale production machine. Using this full scale imple-
mentation, a ground truth dataset was collected to verify the
accuracy of the system. Additionally, a larger, operational
dataset was collected.

1) Ground Truth Data Collection: To measure the ac-
curacy of the system we collected ground truth data by
performing high resolution sweep scans over a stationary
bucket. A dynamic scan as explained in previous sections
was then performed and compared to the high resolution
ground truth scan. On completion of each dig, the operator
rested the bucket on the pad in a position directly under
the laser sweep plane. Four high resolution sweeps, each
producing over 6000 samples on the bucket surface were
collected. This is approximately ten times the number of
samples collected using a dynamic scan during normal
operation of the dragline. The speed and resolution of the
sweep scans were set to achieve an accuracy of above 99%
for an individual sweep. The duration of each sweep was
approximately 45 seconds.

Validation of this ground truth was carried out on a static
empty bucket. This method resulted in an estimation within
0.56% of the rated bucket capacity.

The results of individual buckets are illustrated in Fig. 7,
while Table I shows an RMS error of 3.7% and a negative
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Fig. 8: Scatter plot of bulk densities overlaid on dig design
map. Point color indicates the bulk density measured at a
particular geographic location.

mean error of -1.8% for the entire trial. This is in very good
agreement with the scaled system and also illustrates the
validity and reliability of the methods presented in this paper.

2) Operational Data Collection: Having confirmed the
accuracy of the volume estimates, we used data from multiple
shifts to compute the bulk density of over 1600 buckets,
as a preliminary demonstration of how the system could be
used on a mine site. The bulk densities were mapped back
to their original dig positions using a combination of GPS
and encoder information from the dragline monitor (Fig. 8).
There are two main dig sites apparent from the data with
variance in the density between them. The mine staff noted
that one of these areas consisted of re-handled material,
accounting for the difference. This information can be used
by the mine site to aid in future blast design and in bucket
selection for specific dig sites.

VIII. CONCLUSIONS AND FUTURE WORK

The results show that our system can accurately measure
the in-bucket payload volume with a mean accuracy above
95%. This full scale data also reflects on the quality of the
scale system with 95% performance achieved in the initial
pilot studies.

We wish to extend this work to be used as a tool for
understanding bulk density variation in blasts and to aid in
bucket choice for draglines. A relationship between in-bucket
bulk density and that of the terrain is required to achieve this.
Future research will focus on investigating this relationship.
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